Developing a Verification and Training Phantom for Gynecological Brachytherapy System

نویسندگان

  • Alireza Nikoofar Department of Medical physics, Tehran University of Medical Sciences, Tehran, Iran
  • Khadijeh Asnaashari School of allied medicine, Tehran University of Medical Sciences, Tehran, Iran
  • Mahdi Sadeghi Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Seied Rabi Mahdavi Department of Medical physics, Tehran University of Medical Sciences, Tehran, Iran
چکیده مقاله:

Introduction Dosimetric accuracy is a major issue in the quality assurance (QA) program for treatment planning systems (TPS). An important contribution to this process has been a proper dosimetry method to guarantee the accuracy of delivered dose to the tumor. In brachytherapy (BT) of gynecological (Gyn) cancer it is usual to insert a combination of tandem and ovoid applicators with a complicated geometry which makes their dosimetry verification difficult and important. Therefore, evaluation and verification of dose distribution is necessary for accurate dose delivery to the patients. Materials and Methods The solid phantom was made from Perspex slabs as a tool for intracavitary brachytherapy dosimetric QA. Film dosimetry (EDR2) was done for a combination of ovoid and tandem applicators introduced by Flexitron brachytherapy system. Treatment planning was also done with Flexiplan 3D-TPS to irradiate films sandwiched between phantom slabs. Isodose curves obtained from treatment planning system and the films were compared with each other in 2D and 3D manners. Results The brachytherapy solid phantom was constructed with slabs. It was possible to insert tandems and ovoids loaded with radioactive source of Ir-192 subsequently. Relative error was 3-8.6% and average relative error was 5.08% in comparison with the films and TPS isodose curves. Conclusion Our results showed that the difference between TPS and the measurements is well within the acceptable boundaries and below the action level according to AAPM TG.45. Our findings showed that this phantom after minor corrections can be used as a method of choice for inter-comparison analysis of TPS and to fill the existing gap for accurate QA program in intracavitary brachytherapy. The constructed phantom also showed that it can be a valuable tool for verification of accurate dose delivery to the patients as well as training for brachytherapy residents and physics students.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

developing a verification and training phantom for gynecological brachytherapy system

introduction dosimetric accuracy is a major issue in the quality assurance (qa) program for treatment planning systems (tps). an important contribution to this process has been a proper dosimetry method to guarantee the accuracy of delivered dose to the tumor. in brachytherapy (bt) of gynecological (gyn) cancer it is usual to insert a combination of tandem and ovoid applicators with a complicat...

متن کامل

High-Dose-Rate 192Ir Brachytherapy Dose Verification: A Phantom Study

BACKGROUND The high-dose-rate (HDR) brachytherapy might be an effective tool for palliation of dysphagia. Because of some concerns about adverse effects due to absorbed radiation dose, it is important to estimate absorbed dose in risky organs during this treatment. OBJECTIVES This study aimed to measure the absorbed dose in the parotid, thyroid, and submandibular gland, eye, trachea, spinal c...

متن کامل

A novel phantom design for brachytherapy quality assurance

Background: One major challenge in brachytherapy is to verify the accuracy of dose distributions calculated by the treatment planning system. In this project, a new phantom design has been introduced for quality assurance of dose distributions in gynocological (GYN) brachytherapy implants using EBT GafChromic film. Materials and Methods: This phantom has been designed and fabricated from 90 sla...

متن کامل

developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”

هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...

15 صفحه اول

Dosimetry Comparison of Water Phantom and Complete Eye Definition for 125I and 103Pd Brachytherapy Plaques

Introduction: In this paper, by complete definition of human eye containing the various parts and their materials, the difference between this model and a homogeneous water phantom are compared for two ophthalmic plaques using 125I and 103Pd. Material and methods: The simulation of the two phantoms were performed in the MCNP-4C code and by using the geometry of a three-dimensional eye, differen...

متن کامل

The use of EBT3 film and Delta4 for the dosimetric verification of EclipseTM treatment planning system in a heterogeneous chest phantom: an IMRT technique

Background: This study aimed to evaluate the dose calculation accuracy of EclipseTM treatment planning system (TPS) in a heterogeneous chest phantom with the intensity modulated radiotherapy (IMRT) technique using EBT3 film and Delta4. Materials and Methods: Two IMRT plans (A and B) were prepared for radiotherapy of the heterogeneous chest phantom. Plan A was between the left lung and the surro...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 9  شماره 1

صفحات  33- 40

تاریخ انتشار 2012-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023